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The problem of the linear stability of the states of rest of a viscous compressible medium with infinite conductivity in a magnetic 
field is investigated. It is shown, using Lyapunov's direct method, that these states of rest are unstable to small spatial perturbations, 
which reduce the effective potential energy, that is the sum of the internal energy of the medium and the magnetic-field energy. 
A priori bilateral exponential estimates of the increase in the perturbations are obtained, where the exponents in these estimates 
are calculated from the parameters of the state of rest and the initial data for the perturbations. A class of the most rapidly 
growing perturbations is obtained and an exact formula for determining their growth rate is derived. An example of the states 
of rest and of the initial perturbations which evolve in accordance with the estimates obtained so long as the linear approximation 
holds is constructed. © 2000 Elsevier Science Ltd. All rights reserved. 

The present paper is a natural development and extension of well-known results [1, 2] on new 
magnetohydrodynamic equilibria of a plasma, since it simultaneously takes into account such physical 
properties of the medium as the viscosity and compressibility. 

1. F O R M U L A T I O N  O F  T H E  E X A C T  P R O B L E M  

The three-dimensional motions of a viscous compressible medium of infinite conductivity situated in 
a magnetic field are investigated. It is assumed that the region "r in which the medium flows is bounded 
by fixed impenetrable ideally conducting walls Dr. The following notation is used below: p, p, T, s, e 
and v = (xh, ~2, D3,) are  the density, pressure, temperature, entropy, internal energy and velocity fields, 
h = (h i ,  h2, h3)  is the magnetic field, -q and ~ are constant positive coefficients of the dynamic and second 
viscosity, x = (xl, x2, x3) are Cartesian coordinates and t is the time. In this notation the equations of 
motion of the medium [3, 4] take the form 

dtl  i =(lilt  k + h.'~'-k (hi It - h i t  i),  hi i = 0  P'-a'i- • " ' " 

dp  + P O i  i = 0 ,  dhi =hkPi .  k - h i u i t . t  t T ds  = Dikui.k 
d"-/ " a t  , 19 ~ (1 .1)  

e = e(p, s):de = Tds+P-~dp 
W 

Here 
d ~ - +uit +O, it 
dt ~ t  "~x k ' ¢l ik - 

Dil t -- "q(u i, it +U k.i - -  ~ ~ilJtl l, i ) + ~ ik lJ  t, I 
0 

It is assumed that the following conditions are satisfied on the boundary 

v i = 0 ,  hini =0 (1.2) 

where n = (nl, n2, n3) is the unit outward normal to the boundary O-r of the region in which the medium 
flows. Everywhere summation is carried out over repeated vector and tensor indices from 1 to 3. 
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The initial data for boundary-value problem (1.1), (1.2) are taken in the form 

v(x, 0) = v°(x), p(x, 0) = p°(x), h(x, 0) = h°(x), s(x, 0) = s°(x) (1.3) 

where the functions p°(x) and s°(x) should not contradict the equation of state of the medium, while 
the function h°(x) must convert the second of the equations of system (1.1) into an identity and, together 
with the function v°(x), must agree with boundary conditions (1.2). 

We will assume that all the fields present in relations (1.1)-(1.3) possess the necessary degree of 
smoothness. 

The exact non-stationary solutions of initial-boundary-value problem (1.1)-(1.3) must obey the law 
of conservation of energy 

E I = K I + l ' I I  = c o n s t  

Here 

2K I =-- ~pvpidx, dx -- d x l d x 2 d x  3, l-I l -= 5[pe(p, s)+(8n)-Ihihildx 

(integration is carried out everywhere over the region -r in which the medium flows). 
The exact stationary solutions of mixed problem (1.1)-(1.3) 

v = v0(x)-= 0, p = p0(x), p = p0(x), h = h0(x), s = s0(x) (1.4) 

which correspond to states of equilibrium (rest) of a viscous ideally conducting compressible medium 
in a magnetic field, satisfy the equations. 

hOk (hoi, k-hOk,i)=Po, i' hoi, i "~0, e=eo(Po" So) (1.5) 
4n 

(where Po -- po2eo(po, So)) in the region "r and the condition 

hoitli = 0 (1.6) 

on its boundary O~'. 

2. F O R M U L A T I O N  OF T H E  L I N E A R I Z E D  P R O B L E M  

We linearize initial-boundary-value problem (1.1)-(1.3) on the stationary solutions (1.4)-(1.6), as a result 
of which we obtain the following system of equations 

Oo i, =a k.k -ho, i)+ h°.* 
4~ "Oa.k ' 4~ ' 

, • (2.1) 
hi; i = 0 ,  p~ +uiPo. i +PoVi, i = 0  

hit +Ukhoiok =hoil)  i~k ho~lJk,k, ' " = 0  • • _ • St +UiSO.i 

which determine the development with time of small perturbations of the velocity field v', the density 
field O', the entropy field s' and the magnetic field h' in the region "r in which the medium flows (here 
a partial derivative with respect to time is denoted by a Latin subscript t). We add to this system the 
conditions 

v;=O, hi'ni=O (2.2) 

which are specified on the boundary 0"r, and the initial data 

v'(x, 0 )=  v'°(x), p'(x, 0 )=p ' ° (x) ,  h'(x, 0 )=h ' ° (x ) ,  s'(x, 0 ) = s ' ° ( x )  (2.3) 

where the functions on the right-hand sides of relations (2.3) are subject to the same limitations as the 
functions corresponding to them on the right-hand sides of Eqs (1.3). 

It should be noted that the t e n s o r  o'iPk is identical with the tensor (r;k whenp  in the latter is replaced 
by 
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p, 2 , 2, 
=CoP +PoS ec~,(po, So)(C2o-Po[2%(Po, So)+Po%p(Po, so)l) 

and Dik by D/~. In turn, the tensor D/~ is converted into the tensor Dik if we replace v' by v in it. The 
primes on the perturbation fields and on the tensor fields ¢r;k and D[k will henceforth be omitted. 

In order to demonstrate the instability of states of rest (1.4)-(1.6) to the small spatial perturbations 
(2.1)-(2.3), it is sufficient to obtain at least one perturbation which grows exponentially with time. This 
can be done most simply by reducing the region in which a search is made for such a perturbation by 
considering the motion of a medium consisting exclusively of displacements of fluid particles from their 
equilibrium positions. Such motions are most simply described using the field of Lagrange 
displacements f [5], which satisfies the relation 

f(x, t)=(gi, A, f3):fi, =ui (2.4) 

Taking into account the definition of the field f, the linearized mixed problem (2.1)-(2.3) can be written 
in the form 

h .  h0k 
Pofiu = --P.i + ~ ( h o i . k  + -- hok.i ) " ~ ( h i . k  - hk.i ) + Gikt 

P + f/Pod + Pof/.i = O, h i + Ahoi.lc = hokfi, k -- hoifk.k 

s + f.S o. i =0 (Gi,--rl( f . ,  + f k . i -2  8i, fl.t )+ ~Si, ft.t) in'c 

f /=0 ,  hin i=O on ~'~ 

fix, 0) = f°(x), v(x, 0) = v°(x) 

The energy dissipation equation 

E.= - D  

holds on the solutions of initial-boundary-value problem (2.4), (2.5) where 

E ~- K + FI, 2K -- Spov p idz, 2Fl =- SI-pf,.~ +-~(hi - f,[ho,.i -hoi.,])]d'¢ 

o-:rFn(v --2 ~ikUl.l)2 +~u21]d'c -"JET i,k +Uk,i 

(2.5) 

(2.6) 

(the dot above the letter E denotes a total derivative with respect to time). 
We will assume that an initial field of Lagrange displacements f0* (x) exists, which ensures that the 

following condition is satisfied 

Fl(O) < 0 (2.7) 

Of course, for other initial fields t°(x) (2.5) the inequality sign in (2.7) may be reversed. 
Assuming condition (2.7), we will obtain below bilateral estimates which confirm that small 

perturbations of the states of equilibrium (1.4)-(1.6) grow exponentially with time. 

3. THE LYAPUNOV FUNCTIONAL 

For this purpose, following the recommendations made in [1, 2], we will introduce auxiliary functions 
of the form 

M-= I p0f/f/dx, X~-h4+G, G=-] 7 fi'*+f*'i 81,ft, t)2+~,.z, dx (3.1) 

Differentiating the integral X with respect to time and reducing it further using (2.4)-(2.6) and (3.1) 
we obtain the relation 

)(=4(K-I-I)=8K-4E 
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which is called the virial equation [5]. Multiplying this equation by an arbitrary constant factor h and 
subtracting the result obtained from Eq. (2.6), we obtain the relation 

& = 22,,E x - 4~,Kx - D x (3.2) 

Here 

E x = K x +11 x, 2K x =-2K-LM+~?M = ~p0(f, -TLf)2dx 

2rl~ = 2r]+  x~7+ ~?M, Dx=D-~.G+~?G= 

- r P n  (~, 2 _ 21i;, D ~))2 + ;(u; ~ - M,,)2]a~ 
- J L 7  ~'* + " * " - 7  l i '~'~ -~ ' ( f ' *  +~'~ :~ ' ' 

If we now put X > 0, then, in view of the fact that the functionals Kx and Dx are non-negative, 
we obtain the differential inequality/~a ~< 2KEx, integration of which enables us to establish the 
relation 

E~.(t) <~ E ° exp(2~)(E ° - Ex(0)) (3.3) 

which plays a decisive role in all the subsequent discussions. 
It is important that inequality (3.3) holds for any solutions of mixed problem (2.4), (2.5). Moreover, 

when deriving it it was not necessary to impose any constraints on the sign of the functional 17 (2.6). 
Relation (3.3) shows that the integral E~ (3.2) varies monotonically with time, and it can therefore 

be considered below as the Lyapunov functional [1, 2]. 

4. L O W E R  AND U P P E R  LIMITS  

Suppose condition (2.7) is satisfied. Since the field of Lagrange displacements f and the perturbations 
of the velocity field v are specified at the initial instant of time independently of one another, we can 

0 0 take as the latter the function v (2.3), such that the inequality K ° < [ 17 I is true. In this case the integral 
E~ (3.2) becomes a second-degree polynomial in k with a positive coefficient M ° (3.1) for k 2 and a negative 
free term E ° (2.6) 

E~ = M°~, 2 + a °~  + E°(2A --- G - h;/) (4.1) 

If we choose h > 0, it follows from (4.1) that in the interval 

AO If A0 ,~2 Eo 
0 < ~, < Ai  = -'~'-~'6" + !~t 2--M-5- ) - M 0  (4.2) 

the following relation will hold 

E~. < 0 (4.3) 

Inequalities (3.3) and (4.3) confirm that the solutions of the initial-boundary-value problem (2.4), (2.5) 
will increase exponentially with time. 

Putting h = A1 - B --- cr (with any B from the interval [0, All) we can give relation (3.3) the form 

Eo(t) <~ E ° expl2at] (E ° < 0) (4.4) 

By the definition of the functional Ex we have the inequality 

Ea.(t) > rl(t)  

which enables us to rewrite relation (4.4) in the form 

H(t) < E ° expt2at] (4.5) 

Using the additional integral 
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J( t )  = 1. [p2 + s = + A.~ + hih~ +/~/~] ax 

inequality (4.5) is converted to the final and most obvious form 

J( t )  >lcE ° I exp[2ot] (4.6) 

where c is a known constant. It follows from (4.6) that the parameter ~r (4.2), (4.4) is a lower limit of 
the increment of tlhe solutions of mixed problem (2.4), (2.5). 

Limit (4.6) can be improved considerably if the initial perturbations of the velocity field v ° is related 
to the initial field of Lagrange displacements f0* (2.5), (2.7) by the equality 

v°(x) = Zf°*(x) (4.7) 

In fact, the presence of relation (4.7) is the reason that we can obtain from (3.2) the relations 

which, when h > 0, and taking (4.1) into account, enables us to be certain of the truth of the inequality 
II ° < 0 in the interval 

G° + I f  G° ~2 2n o 
Mo (4.8) 

If we take k = A - -  ~ 1  ~ trl( with arbitrary ~ from the interval [0, A]), we can write relation (3.3) in the 
form 

Ea, (t) ~< FI°o, exp[2odI (FI °, < 0) (4.9) 

whence, using the definition of the functional J(t) we can also derive the required improved (i.e. more 
rigorous) limit 

J(t) >1 ctrl°o, l expI2od] (4.10) 

(here cl is a known constant quantity). Inequality (4.10) indicates that the parameter tr 1 (4.8), (4.9) 
gives a lower limit for the values of the increments of the solutions of initial-boundary-value problem 
(2.4), (2.5), (4.7). A comparison of the limits (4.6) and (4.10) shows that the solutions of mixed problem 
(2.4), (2.5), the initial data of which are additionally subject to condition (4.7), increase faster than all 
the remaining perturbations. 

However, the greatest increase in the solutions of initial-boundary-value problem (2.4), (2.5) is 
observed when their growth increment is equal to the following quantity 

A + = SUPro.(x ) A (4.11) 

In order to prove this assertion we need to obtain the limit from which the upper bound of the growth 
of small spatial perturbations of states of rest (1.4)-(1.6) follow. To do this the parameter k is chosen 
to be strictly greater than A ÷. Then the integral H°x will be positive definite for any possible specification 
of the initial field of the Lagrange displacements f0 (2.5). This means that the functional ~x will also 
be positive for all possible initial fields of the Lagrange displacements fo and perturbations of the velocity 
field v ° (2.4), (2.5). 

Consequently, taking k = A ÷ + e = or2, where e > 0, we can represent inequality (3.3) in the form 

Ea2 <~ E° exp[2o2t] (4.12) 

If we now bear in mind the limit 

H A. (t) ~> 0 

inequality (4.12) can be rewritten in the clearer form 

2Ka2 (t) + •(A + + 6 z)M(t) + EG(t) <~ 2L~a 2 exp[2o2t] (4.13) 
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Relation (4.13) confirms that the parameter or2 (4.8), (4.11) gives an upper limit of the increment of 
the solutions of mixed problem (2.4), (2.5). 

A comparison of the limits (4.10) and (4.13) enables us to conclude that the parameter A ÷ sets both 
a lower and upper limit to the growth of the solutions of initial-boundary-value problem (2.4), (2.5) 

A+-8 ,  ~< co. ~< A++e  (4.14) 

In turn, the double inequality (4.14) enables us to conclude that the solutions of mixed problem (2.4), 
(Z5) that grow most rapidly are those for which the increment is identical in value with A ÷ (4.11). 

Thus, if condition (2.7) is satisfied, then, by calculating the value of A ÷ from formulae (4.10) and 
(4.11) we can determine the characteristic time during which a viscous ideally conducting compressible 
medium, containing a magnetic field, transfers to some state of equilibrium (1.4)-(1.6). 

5. E X A M P L E  

Consider, in a cylindrical system of coordinates r, ~p, z, the magneto-hydrodynamic states of rest of a 
viscous compressible medium of infinite conductivity, which completely fills the space between two 
coaxial cylinders, limited in height 

3(X2 4 
v o toO, h o =(0, (xr 2, 0), Po = l - ~ [ r 2  -r4] 

e0 =e0(P0, So), P0 =P0(r), So =s0(r) (5.1) 

"~=[(r, z ) ' 0 < r  I <r<r  2, O<z<zz] 

(here a, rl, r2 and zl are constant quantities). It should be noted that the equation of state of the medium 
is assumed to be arbitrary, while the functions P0 and so are chosen so as to obtain the required 
distribution of the pressure P0 for any equation of states specified in advance. 

The states of equilibrium (5.1), which can be verified by direct calculations, are the exact solutions 
of stationary equations (1.5) in the region r whereas on its surface O-r = [(r, z) : r = rl, r = re, z = 0, 
z = z~] the magnetic field h0 satisfies boundary condition (1.6). 

It turns out that these states of equilibrium will be unstable, for example, to those small perturbations 
to which the initial Lagrange displacement field corresponds 

f0* (r-I3q2, - I~r  ) = ~, ~z  ql ,  - r (5.2) 

where it is required of the function q~(r, z) and q2(r, z) only that they ensure the validity of boundary 
conditions (2.5). Otherwise, these functions are assumed to be quite arbitrary and, in particular, can 
be taken in the following form 

qk = a~(r- r l)k (r-  r2) k z ~(z- zl)k(k = 1, 2) (5.3) 

where al and a 2 are certain constants. 
In fact, by making the necessary calculations it is easy to show that in this case 

i.l(0)=_(X2 ~ z~ (~qtla rdrdz < O 
2 n "o 

i.e. condition (2.7) holds. Hence, perturbations (5.2) and (5.3) will grow with time in accordance with 
the limits (4.6), (4.10) and (4.13), and there rate of growth will be given by formulae (4.2), (4.8) and 
(4.11). 
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